If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+14X-91=0
a = 1; b = 14; c = -91;
Δ = b2-4ac
Δ = 142-4·1·(-91)
Δ = 560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{560}=\sqrt{16*35}=\sqrt{16}*\sqrt{35}=4\sqrt{35}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{35}}{2*1}=\frac{-14-4\sqrt{35}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{35}}{2*1}=\frac{-14+4\sqrt{35}}{2} $
| 3-m=6 | | -18/7=n/7 | | x/22=-8 | | 30=n-(-2) | | 15=n-(-4) | | 15=n-(4) | | 900=-30x | | 3.5g=2/6 | | n/20=1/20 | | 8x4-72=0 | | x−x−52=1−x−12 | | 2x^2-22x=15 | | 8k-8k= | | 4x+5.2^x+4=0 | | 3(2x-11)+2(5x-8)=4(3x+6)-1 | | 3(2x-11)+5(x-8)=4(3x+6)-1 | | 7X+10+3x+10=180 | | X+x/1=26/5 | | 2x+3=4×+5 | | 5x^2+5x+21=0 | | x7+x4+x3+1=0. | | -5(x+2)^3=1/25 | | X(x^-x-1)=-1 | | 3x/(1-4x)=-4 | | 13^x=8.4 | | x/ 10x−6+18x−6(2x−4)=2 | | 4x-5=15-6x | | 14+7p=4p-2 | | 12x^2-2x-4= | | Z=8+9i | | 4(10-p)=9+p | | 4x+10+x+10=180 |